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Current limitation in mercury vapour discharges 
I. Theory 

P. C. STASGEBY and J. E. ALLEN 
Department of Engineering Science and University College, Oxford, England 
MS.  received 3rd August 1970 

Abstract. A theoretical description of the current limit phenomenon based on 
the limited ionizing ability of the electrons has been obtained. The current 
limit is found to be a double-valued function of pressure. This limited ionizing 
ability implies that positive column existence is only possible when the product 
of the gas density and column radius is greater than a critical value. High 
currents reduce the gas density to the critical value causing current limitation. 
Assumptions of the form of the electron velocity distribution at current limit 
are avoided by working with the mean free path of the neutral for ionization, A, 
as a parameter. Both the ion wall current and the neutral depletion are calculated 
in terms of A and, by relating ion wall current and arc current, gas density is 
related to arc current. Low currents reduce the plasma radius until the critical 
value is reached causing current limitation. 

1. Introduction 
I t  has long been known, Langmuir and Mott-Smith (1924), that an upper limit 

exists to the current which a low pressure arc discharge can pass. For the dc arc, 
current increase is achieved with slight rise in arc voltage until a t  a sharply defined 
current level the limitation phenomenon occurs. This limitation may be characterized 
by complete arc extinction or the arc voltage abruptly rises until the external voltage 
supply is exhausted. The current limit level is a function of gas pressure and tube 
radius but is independent of electrode effects, that is it is a positive column phenom- 
enon. 

Substantially different physical effects occur depending on whether the arc current 
is steady or pulsed (and if pulsed, on the time scale) and on whether the discharge 
tube is of simple or constricted geometry (a physical constriction in the positive 
column precipitates the formation of an electrostatic double sheath which strongly 
accelerates electrons causing localized enhancement in ionization, see Andrews and 
Allen 1970). In  the present work the unconstricted dc discharge is considered. 
Attention is further confined to the ion free fall rCgime (Tonks and Langmuir 1929), 
which for mercury vapour occurs at pressures below 1 mtorr (for radius about 1 cm). 

The  first quantitative theoretical work in this area was that of Allen and Thone- 
mann (1954) and extended in the work of Allen et al. (1963) and Caruso and Cavaliere 
(1964). 

The ion wall current is given by 
I, = etcn,EB 

where e is the electronic charge, 12, is the charged particle density at the plasma 
boundary and U is a constant of order 1 to account for the distribution in ion energies 
(see Allen and Thonemann 1954) and 

is the Bohm speed where T ,  is the electron temperature and M the ion mass, 
I08 
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T h e  random electron current density at the sheath edge is 

where m is the electron mass. Then the tube current is 
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where y is the ratio of electron density averaged across the tube to the density at the 
sheath edge (J. G. Andrews 1968 private communication), fl is the ratio of drift to 
random electron current and yo is the tube radius. 

Now I,/e can never exceed the flux v o  of neutral particles returning from the wall, 
hence the current limit, as given by Allen and Thonemann, is 

assuming that Py/u is constant (the constancy of Py/x as current limit is approached 
has been verified experimentally with the use of wall probes, Stangeby and Allen 
1971). 

If there are liquid Hg deposits on the tube walls then v o  is given by the wall 
temperature. If the Hg deposits are elsewhere in the system then it may be argued 
(Allen et al. 1963) that v o  is established by the temperature of these deposits indepen- 
dent of arc current (this has been verified experimentally with pressure gauges, 
Stangeby and Allen 1971). 

According to this picture, at current limit the neutral particles are ionized even 
before reaching the centre of the tube. This may be objected to (Stangeby 1968) on 
the grounds of the limited ionizing ability of the electrons. That is, even if the mean 
electron energy corresponds to the maximum of the ionization cross sections, the 
mfp (mean free path) of the neutral for ionization (A) may still be greater than ro. 
The electrons reach the limit of their ionizing power before the condition I,/e = v o  
is attained. 

A preliminary report of the following work has already appeared, see Stangeby and 
Allen (1970). 

2. Theory including finite X 
The  effect of the finite ionizing ability of the electrons on the arc characteristics 

may be seen by the following qualitative argument. The ion loss rate per unit length 
is 

while ion production is given by 

where n is the gas density, f ie = yn, and g( T,) is a function of the electron temperature 
and the ionization cross section of the discharge gas. From equations (5) and (6) 
one obtains the basis for the relation between T, and nr:  

2xrn,avB ( 5 )  

rrr2fieng( T,) (6) 
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Owing to the finite ionization cross section, g( T,)  has a maximum value and hence a 
minimum exists to possible values of the parameter nr for existence of the positive 
column. 

Poletaev (195 1) has provided the experimental value for Hg vapour 

(nr),in = C, = 3.9 x 1OI6 m-2 ,  (8) 
The  value of C, is discussed in Appendix 2. 

As equation ( 7 )  is explicitly independent of I this latter theory does not directly 
provide a current limit theory. However, sufficiently high currents cause neutral 
gas depletion hence n = %(I),  effectively. Also at very low currents the wall sheath 
grows, reducing the plasma radius r ,  hence r = ( I ) ,  effectively. 

2.1. High-current rkgime 
Current limitation is assumed to occur when I reaches I ,  making 

fi(IL)Y0 = c, 
where f i ( Z )  is the neutral density averaged across the tube cross section and A(I)  < no, 
the density at I = 0. Since the electron distribution at current limitfL(ve), is strongly 
non-Maxwellian, calculations of f i ( I )  which depend on assumptions of the form of the 
distribution will be subject to uncertainty. This problem may be avoided by working 
with A-the mfp for the neutral for ionization-and calculating 

(i) It(  A) and then using equation (3), I( A) 
(ii) n(r, A) the neutral density as a function of X and radius and thus fi( A) 

and from I( A)  and fi( A) one obtains fi(I). In  this way the calculation of A{ne,fL( v,)) 
is avoided. Of course A cc uN where cN is the neutral speed and a calculation based 
on the distribution of neutral speeds is straightforward in principle but for simplicity 
we shall assume that all the neutrals move with their average speed 2. Also h is assumed 
to be independent of r thus A is averaged across the tube diameter in effect. 

T o  calculate I( h) consider the flux of neutral particles at an element of wall surface 
in the absence of a discharge. The  emitted (or received) flux density according to the 
cosine law is 

where 6' and 4 are the normal and azimuthal angle respectively and the elemental 
solid angle is 

dQ(6',+) = sin 6' d6' d+. 

By integration over 8 and 4 the total emitted flux density is 

vo = an,,?. 

In  the presence of a discharge the probability that an atom reaches the element s 
is given by exp{ - Z(0, +)/A), so that the received flux density is modified to 

where Z(e, 4) is the distance from the sample point to the wall emission point at 
angle (0, +)-see figure 1-(rectilinear motion is assumed) and no is now defined by 
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no = 4v0/E. From figure 1 one finds 

2r0 cos 0 
cos2 0 + sin* 0 sin2 4. 4 0 ,  $1 = - (11) 

From conservation of heavy particle flow 

Thus relating I and I ,  by equation (3) one obtains I(h).  This relation obtained 
by numerical integration is given in figure 2. The abscissa is li/voe or equivalently 
I / IAT.  Note that the Allen-Thonemann limitation occurs when I ,  = &noEe, that is 

Figure 1, Neutral flux into wall point S. 

4 /U,@ 

Figure 2. Neutral mfp as a function of ion wall current. 

when X -+ 0 independent of starting pressure. In  the present work it is postulated 
that for X(1,) > 0 the average neutral density is reduced to n, causing limitation 
where 

n, = c1/r0* 
To obtain the neutral density distribution in the discharge volume as a function 

of A, that is n(r, A), consider figure 3.  I n  the absence of a discharge the elemental 
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area dAs at the point S on the wall emits 

neutral+ into the elemental cone dQ($, e) where $ and ( are the normal and azimuthal 
angles at S. Hence the flux density across the elemental surface at P,  namely 

is 
E cos *no 

b y  
dAs particles/m2 s 

where y = 1 SP 1 .  This contribution to the density at P is therefore 

no cos # 
dn(r,h) = ~ dA,. 

4xy2 

In  the presence of a discharge this is modified to 

( cos$dA,. dn(r, A) = --eesp - - 
n0 

4792 

- -- 

P 

Figure 3. Neutral flux received at volume point P from S. The construction 
illustrates the relation r o  = y cos # -ir  sin 8. 

From figure 3 one may obtain the relations 

ro = y c o s $ + r s i n O  
y 2  = yo2 + r2  + z2 - 2r0v sin 0 

dA, = yo d9 dz. 

By using these relations and normalizing with p = r / ro  and x = z/ro one obtains 

n(P, h)  = 2 .x j”!z (1 - p sin 0) exp{ - (r0/A)( 1 +p2 + x2 - 2 p  sin 0)1!2) 
- dx do. 

(1 + p2 + x2 - 2p sin 0)312 
(15) 

7 7  i = o  8 = - n ! 2  

For h + CO, n(p) -+no for all p, as required. 
This integral has been obtained by numerical integration and is shown in figure 4. 

(Convergence for p = 1 is slow using equation (15) and an alternative formula for 
n(p, A) may be used here-see Appendix 1). 
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From the values of n(p, A) one obtains the average neutral density across the tube 

ii(A) = - ~(A,p)2xpdp. 
V O  'I' 

The function ri( A) is given in table 1. 
The  critical A(1,) is such that W(A(1,)) = n,. One thus obtains IL(po)  the current 

limit as a function of starting pressure as shown in figure 5 ,  In  Appendix 3 it is shown 

0 0.5 
r tr, 

Figure 4. Radial variation of neutral density with neutral mfp as parameter. 

p (mtorr) 

Figure 5 ,  Current limit (high-current regime) as a function of starting pressure. 
($/GI) = 1. Broken line gives IAT/nro2. 
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Table 1. Average neutral density as a function of the mfp 

Air0 ii(hiro)ino 
a : 1  

16 0.940 
8 0.874 
4 0.763 
2.67 0,679 
2 0.608 
1.33 0.496 
1 0.418 
0.67 0.311 

that IL /ro  and 1zor0 are similarity variables and accordingly the information in figure 5 
may be compactly presented as in figure 6 . t  

po r, (mtorr cm)  

Figure 6. High-current rCgime limit showing similarity relation between IL / ro  
and flora. (y/3/cl) = 1. Broken line gives I A ~ I Y ~ .  

A plot of h(1,)-see figure 7-reveals that 

which is to be expected as 

where ( ~ J ~ Q ~ ) ~ ~ ~  is the neutral ionization coefficient corresponding to maximum 
electron ionization efficiency and 

t Appreciation is expressed to Dr. R. N. Franklin for suggesting the similarity relation 
used in figure 6. 
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thus 

I L / n r o 2  ( A  cm-*) 

Figure 7 .  X L  and l / h ,  against high current rCgime limit. (ypj’x) = 1. 

2.2. Lower current branch 
For sufficiently small currents n will be essentially unaffected by the current and 

will be equal to no, however the radius of the plasma (i.e. of the conducting region) 
will decrease owing to growth in the wall sheath Y = r(1) in effect. Thus current 
limit is assumed to occur when I reaches IL making 

The radius is given by 
r(IL)no = C1. 

where A, is the Debye length at current limit and Cz gives the sheath thickness in 
Debye lengths. For a Maxwellian electron distribution 

In the present case fL( v,) is non-Maxwellian, however it is assumed that fL( U,) is 
independent of ro,  ne, etc., hence 

hD2ne = c3 
where C, is a constant 

Combining equations (1) and (3) gives 
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with 

where T, mill be considered as an effective electron temperature. 
Thus combining equations (20), (21), (23) and (24) gives 

Approximate values for the constants for mercury as the operating gas are given 
in Appendix 2. For y o  = 5 mm and 12.5 mm the upper and lower current branches 

-5 0 5 IO 
T (OC) 

Figure 8. High and low current limit as a function of Hg condensing temperature. 
Full line, high rCgime ; broken line, low rCgime. (yp/a) = 1. 

are shown in figure 8. No attempt has been made to establish theoretical values for 
the transition between the two branches owing to the uncertainty in the constants. 

3. Conclusions 
A theoretical description of the current limit phenomenon based on the limited 

ionizing ability of the electrons has been obtained. The current limit is found to be 
a double-valued function of pressure. This limited ionizing ability implies that posi- 
tive column existence is only possible when the product of the gas density and column 
radius is greater than a critical value. High currents reduce the gas density and low 
currents reduce the plasma radius until the critical value is reached causing current 
limitation. 
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Appendix 1. Alternative formula for n(p, A )  

neutral density at P which arrived via the elemental solid angle dQ(0, 4) is 

EO 

I n  the absence of a discharge for any point P in the volume the portion of the 

dQ(0) 4)  
477 

(P is the origin for 0, 4). In  the presence of a discharge this becomes 

dQ(@, 4) exp ( - lPlV(8) 4))  
x n0 4n 

where Zpw (0, 4 )  is the distance from P to the wall at angle (8, 4). Hence 

If P is just at the wall then half the particles arrive at P directly from the wall 
without attenuation and the rest as per equation (A.1). Hence 

2n dQ 
n( 1, A) = &zo + 

where 
2r0 cos e 

j(e> (b) = - 
cos2 0 + sin2 8 sin2 9 

as in equation (11). Values of n(1, A) 
found from figure 4. 

Appendix 2. Values of the constants 

obtained by numerical integration can be 

for mercury vapour 
( a )  C1 : Poletaev (195 1)) assuming a Maxwellian distribution for the electrons 

has calculated that 
(rn)c = 2.8 x m-2  
( P Y ) ~  = 0-079 mtorr cm 

(corresponding to a TeL of about 25 eV) compared with an experimental value of 

( T T Z ) ~  = 3.9 x 10l6 m-2  

( ( p ~ ) ~  = 0.11 mtorr cm). 

The disagreement between the two figures is not excesske considering that: 
(i) the electron distribution at current limit is substantially non-Maxwellian 

owing to strong electron drift and depletion of electrons due to excitation and 
ionization. 

(ii) Poletaev uses a mathematical approximation to the ionization cross section 
data of Bleakney (1930). This approximate cross section is not in complete agreement 
with the more precise work of Nottingham (1939) 



118 P. C. Stangeby and J. E. Allen 

(iii) no account is taken of the loss rate of Hg2.- ions (which reach the sheathedge 
with speeds 112 times greater than the Hg+ ions) despite the fact that the ionization 
cross section for Hg2+ starts at 29 eV. 

Accordingly the experimental value is taken so that 

C1 = 3.9 x 10l6 m-2 .  

( b )  Cz: For very small electron desnsities the division of the positive column 
into plasma and sheath regions becomes increasingly artificial. However, an approxi- 
mate value for the sheath thickness in Debye lengths is given by Self (1963) for the 
low-current rCgime considered here as 

c2 N 9. 

This is not in conflict with the value C2 = 10 which may be estimated from the work 
of Tonks and Langmuir (1929). 

(c)  C,: The calculation of the Debye length itself is rendered difficult by the 
non-Maxwellian nature of the electron distribution at current limit ; however, recent 
experimental results, Stangeby and Allen (1971)) indicate that the effective T ,  at 
current limitation is approximately Tei N 10 eV and accordingly 

( d )  C,: The  calculation of C4 is also dependent on TeL but only as T,:i2, hence 
from equation (24), and setting p = 1, 

KT,, 1/2 

2nm 
C, = 8/-) r e  2: 2.7 x ,4mM1. 

Appendix 3. IL/ro and norO as similarity variables (high-current r&gime) 
Four equations are used to calculate IL(no, y o )  : 

2 cos L9 
I,, = &Eno - d$d+sinBcose 

dp dxdL92np(l -psinL9)exp{-(ro/XL)(1 +p2+~2-2ps in8)1”2)  
(1 + p 2  + x2 - 2 p  sin 0)3!2 (244) 

Thus, from equation (A2), 

where f is a function of y o / h ,  only; from equations (A3) and (,46) 
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so that 

where g is a function of ro/AL only; from equation (A4) 

ZL = nohi:) 
I 

with h a function of yo/AL only. 
Combining (A5) and (-48) 

hence 

and from (A7) 

so that from (49) and (A10) 
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